报告题目:Merris' Problems and Doubly Stochastic Graph Matrices
报告人:张晓东(上海交通大学 教授 博导)
报告地点:数统学院201
报告时间:2017年9月17上午9:30-10:30
摘要: Let $G$ be a simple graph and $L(G)=D(G)-A(G)$ be its Laplacian matrix, where $A(G)$ and $D(G)$ are the adjacency matrix and degree diagonal matrix. Then $\Omega(G)=(L(G)+I_n)^{-1}$ is called the doubly stochastic matrix of $G$. Merris in 1998 proposed two conjectures and two problems of the doubly stochastic matrix, which are revealed some relations among, algebraic connectivity, the entry of $\Omega(G)$ and graph structure. In this talk, we survey some progress and results on these conjectures and problems of Merris. In addition, some new problems are included.
报告人简介:张晓东,教授、博士生导师。1998年6月在中国科学技术大学获得理学博士学位。曾在以色列理工学院做博士后、美国加州大学圣地亚哥分校等校做访问学者。多次主持国家自然科学基金项目和参加国家973项目和863项目。曾获得安徽省科技进步二等奖和教育部科学技术进步三等奖。 已经在SCI期刊发表100多篇论文,出版专著一本。 担任中国运筹学会图论组合分会副理事长。目前主要研究领域为随机图与复杂网络,谱图理论,组合矩阵论等。