学术报告:Geometric and arithmetic properties of Besicovitch sets
报告题目:Geometric and arithmetic properties of Besicovitch sets
报告摘要: Besicovitch sets are related to many mathematic fields. For instance, fractal geometry, harmonic analysis, and combinatorics. In this talk, we introduce the definition of Besicovitch sets and Kakeya conjecture. We show some known results by applying geometric methods and Bourgain's arithmetic method. As a corollary of above arguments, we obtain the lower bounds estimates for the box dimension of Besicovitch sets.
主办单位:湖北大学数学与统计学学院
报告专家:陈昌昊
报告时间:2017年9月9日(周六)14:00-15:00
报告地点:数统学院203会议室
专家简介:陈昌昊,男,New South Wales(悉尼)博士后,Oulu大学(芬兰)博士,期间研究内容有projections of fractal sets, Kakeya problem, metric Diophantine approximation, Fourier transform of measures, doubling measures, quasiconformal mappings, dynamical systems, etc. 期间在Illinosis Journal of Mathematics、Ann. Acad. Sci. Fenn. Math.、Ark. Mat.等杂志发表SCI论文进二十篇。先后参加十余场国际会议,并多次作报告。