登录

Mean curvature flow of surfaces in a hyperkaehler 4-manifold
[  作者:    人气:  创建时间:2019/06/07  ]

报告名称:Mean curvature flow of surfaces in a hyperkaehler 4-manifold

主办单位:数学与统计学学院

报告专家:邱红兵(副教授)

专家所在单位:武汉大学数学与统计学学院

报告时间:2019年6月10日10:00-11:00

报告地点:数学与统计学学院201报告厅

专家简介:邱红兵,武汉大学青年老师,博士毕业于复旦大学。主持国家自然科学基金面上一项,青年一项。在Advance in Math.,PAMS等著名杂志发表论文10余篇。

报告摘要:In this talk, we firstly prove that every hyper-Lagrangian submanifold L^{2n}(n > 1) in a hyperkaehler 4n-manifold is a complex Lagrangian submanifold. Secondly, we study the geometry of hyper-Lagrangian surfaces and demonstrate an optimal rigidity theorem with the condition on the complex phase map of self-shrinking surfaces in R^4 . Last but not least, we show that the mean curvature flow from a closed surface with the image of the complex phase map contained in S^2\(S^1_{+}) in a hyperkaehler 4-manifold does not develop any Type I singularity. This is a joint work with Dr. Linlin Sun.